

A197386


Decimal expansion of least x > 0 having sin(Pi*x/3) = sin(3*x)^2.


2



1, 2, 1, 3, 0, 3, 7, 5, 6, 3, 4, 4, 5, 3, 6, 4, 5, 1, 1, 9, 4, 9, 3, 2, 1, 3, 9, 7, 3, 2, 0, 4, 5, 8, 9, 2, 3, 3, 7, 9, 6, 8, 0, 3, 7, 0, 3, 7, 8, 7, 6, 7, 6, 1, 3, 4, 3, 4, 2, 2, 1, 5, 3, 3, 5, 1, 7, 1, 0, 7, 5, 9, 6, 2, 8, 0, 7, 7, 6, 9, 9, 7, 0, 8, 4, 4, 8, 4, 3, 9, 6, 7, 8, 6, 1, 5, 0, 2, 2
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


COMMENTS

The Mathematica program includes a graph. See A197133 for a guide to least x > 0 satisfying sin(b*x) = sin(c*x)^2 for selected b and c.


LINKS

Table of n, a(n) for n=0..98.


EXAMPLE

x=0.121303756344536451194932139732045892337968...


MATHEMATICA

b = Pi/3; c = 3; f[x_] := Sin[x]
t = x /. FindRoot[f[b*x] == f[c*x]^2, {x, 0.1, 0.2}, WorkingPrecision > 200]
RealDigits[t] (* A197386 *)
Plot[{f[b*x], f[c*x]^2}, {x, 0, 1.2}]


CROSSREFS

Cf. A197133.
Sequence in context: A231204 A180987 A092093 * A096269 A260437 A262677
Adjacent sequences: A197383 A197384 A197385 * A197387 A197388 A197389


KEYWORD

nonn,cons


AUTHOR

Clark Kimberling, Oct 14 2011


STATUS

approved



