Create a CI/CD pipeline for .NET Lambda functions with AWS CDK Pipelines

The AWS Cloud Development Kit (AWS CDK) is an open-source software development framework to define cloud infrastructure in familiar programming languages and provision it through AWS CloudFormation.

In this blog post, we will explore the process of creating a Continuous Integration/Continuous Deployment (CI/CD) pipeline for a .NET AWS Lambda function using the CDK Pipelines. We will cover all the necessary steps to automate the deployment of the .NET Lambda function, including setting up the development environment, creating the pipeline with AWS CDK, configuring the pipeline stages, and publishing the test reports. Additionally, we will show how to promote the deployment from a lower environment to a higher environment with manual approval.

Background

AWS CDK makes it easy to deploy a stack that provisions your infrastructure to AWS from your workstation by simply running cdk deploy. This is useful when you are doing initial development and testing. However, in most real-world scenarios, there are multiple environments, such as development, testing, staging, and production. It may not be the best approach to deploy your CDK application in all these environments using cdk deploy. Deployment to these environments should happen through more reliable, automated pipelines. CDK Pipelines makes it easy to set up a continuous deployment pipeline for your CDK applications, powered by AWS CodePipeline.

The AWS CDK Developer Guide’s Continuous integration and delivery (CI/CD) using CDK Pipelines page shows you how you can use CDK Pipelines to deploy a Node.js based Lambda function. However, .NET based Lambda functions are different from Node.js or Python based Lambda functions in that .NET code first needs to be compiled to create a deployment package. As a result, we decided to write this blog as a step-by-step guide to assist our .NET customers with deploying their Lambda functions utilizing CDK Pipelines.

In this post, we dive deeper into creating a real-world pipeline that runs build and unit tests, and deploys a .NET Lambda function to one or multiple environments.

Architecture

CDK Pipelines is a construct library that allows you to provision a CodePipeline pipeline. The pipeline created by CDK pipelines is self-mutating. This means, you need to run cdk deploy one time to get the pipeline started. After that, the pipeline automatically updates itself if you add new application stages or stacks in the source code.

The following diagram captures the architecture of the CI/CD pipeline created with CDK Pipelines. Let’s explore this architecture at a high level before diving deeper into the details.

Figure 1: Reference architecture diagram

The solution creates a CodePipeline with a AWS CodeCommit repo as the source (CodePipeline Source Stage). When code is checked into CodeCommit, the pipeline is automatically triggered and retrieves the code from the CodeCommit repository branch to proceed to the Build stage.

Build stage compiles the CDK application code and generates the cloud assembly.

Update Pipeline stage updates the pipeline (if necessary).

Publish Assets stage uploads the CDK assets to Amazon S3.

After Publish Assets is complete, the pipeline deploys the Lambda function to both the development and production environments. For added control, the architecture includes a manual approval step for releases that target the production environment.

Prerequisites

For this tutorial, you should have:

An AWS account

Visual Studio 2022
AWS Toolkit for Visual Studio
Node.js 18.x or later
AWS CDK v2 (2.67.0 or later required)
Git

Bootstrapping

Before you use AWS CDK to deploy CDK Pipelines, you must bootstrap the AWS environments where you want to deploy the Lambda function. An environment is the target AWS account and Region into which the stack is intended to be deployed.

In this post, you deploy the Lambda function into a development environment and, optionally, a production environment. This requires bootstrapping both environments. However, deployment to a production environment is optional; you can skip bootstrapping that environment for the time being, as we will cover that later.

This is one-time activity per environment for each environment to which you want to deploy CDK applications. To bootstrap the development environment, run the below command, substituting in the AWS account ID for your dev account, the region you will use for your dev environment, and the locally-configured AWS CLI profile you wish to use for that account. See the documentation for additional details.

cdk bootstrap aws://<DEV-ACCOUNT-ID>/<DEV-REGION>
–profile DEV-PROFILE
–cloudformation-execution-policies arn:aws:iam::aws:policy/AdministratorAccess

‐‐profile specifies the AWS CLI credential profile that will be used to bootstrap the environment. If not specified, default profile will be used. The profile should have sufficient permissions to provision the resources for the AWS CDK during bootstrap process.

‐‐cloudformation-execution-policies specifies the ARNs of managed policies that should be attached to the deployment role assumed by AWS CloudFormation during deployment of your stacks.

Note: By default, stacks are deployed with full administrator permissions using the AdministratorAccess policy, but for real-world usage, you should define a more restrictive IAM policy and use that, refer customizing bootstrapping in AWS CDK documentation and Secure CDK deployments with IAM permission boundaries to see how to do that.

Create a Git repository in AWS CodeCommit

For this post, you will use CodeCommit to store your source code. First, create a git repository named dotnet-lambda-cdk-pipeline in CodeCommit by following these steps in the CodeCommit documentation.

After you have created the repository, generate git credentials to access the repository from your local machine if you don’t already have them. Follow the steps below to generate git credentials.

Sign in to the AWS Management Console and open the IAM console.
Create an IAM user (for example, git-user).
Once user is created, attach AWSCodeCommitPowerUser policy to the user.
Next. open the user details page, choose the Security Credentials tab, and in HTTPS Git credentials for AWS CodeCommit, choose Generate.

Download credentials to download this information as a .CSV file.

Clone the recently created repository to your workstation, then cd into dotnet-lambda-cdk-pipeline directory.

git clone <CODECOMMIT-CLONE-URL>
cd dotnet-lambda-cdk-pipeline

Alternatively, you can use git-remote-codecommit to clone the repository with git clone codecommit::<REGION>://<PROFILE>@<REPOSITORY-NAME> command, replacing the placeholders with their original values. Using git-remote-codecommit does not require you to create additional IAM users to manage git credentials. To learn more, refer AWS CodeCommit with git-remote-codecommit documentation page.

Initialize the CDK project

From the command prompt, inside the dotnet-lambda-cdk-pipeline directory, initialize a AWS CDK project by running the following command.

cdk init app –language csharp

Open the generated C# solution in Visual Studio, right-click the DotnetLambdaCdkPipeline project and select Properties. Set the Target framework to .NET 6.

Create a CDK stack to provision the CodePipeline

Your CDK Pipelines application includes at least two stacks: one that represents the pipeline itself, and one or more stacks that represent the application(s) deployed via the pipeline. In this step, you create the first stack that deploys a CodePipeline pipeline in your AWS account.

From Visual Studio, open the solution by opening the .sln solution file (in the src/ folder). Once the solution has loaded, open the DotnetLambdaCdkPipelineStack.cs file, and replace its contents with the following code. Note that the filename, namespace and class name all assume you named your Git repository as shown earlier.

Note: be sure to replace “<CODECOMMIT-REPOSITORY-NAME>” in the code below with the name of your CodeCommit repository (in this blog post, we have used dotnet-lambda-cdk-pipeline).

using Amazon.CDK;
using Amazon.CDK.AWS.CodeBuild;
using Amazon.CDK.AWS.CodeCommit;
using Amazon.CDK.AWS.IAM;
using Amazon.CDK.Pipelines;
using Constructs;
using System.Collections.Generic;

namespace DotnetLambdaCdkPipeline
{
public class DotnetLambdaCdkPipelineStack : Stack
{
internal DotnetLambdaCdkPipelineStack(Construct scope, string id, IStackProps props = null) : base(scope, id, props)
{

var repository = Repository.FromRepositoryName(this, “repository”, “<CODECOMMIT-REPOSITORY-NAME>”);

// This construct creates a pipeline with 3 stages: Source, Build, and UpdatePipeline
var pipeline = new CodePipeline(this, “pipeline”, new CodePipelineProps
{
PipelineName = “LambdaPipeline”,
SelfMutation = true,

// Synth represents a build step that produces the CDK Cloud Assembly.
// The primary output of this step needs to be the cdk.out directory generated by the cdk synth command.
Synth = new CodeBuildStep(“Synth”, new CodeBuildStepProps
{
// The files downloaded from the repository will be placed in the working directory when the script is executed
Input = CodePipelineSource.CodeCommit(repository, “master”),

// Commands to run to generate CDK Cloud Assembly
Commands = new string[] { “npm install -g aws-cdk”, “cdk synth” },

// Build environment configuration
BuildEnvironment = new BuildEnvironment
{
BuildImage = LinuxBuildImage.AMAZON_LINUX_2_4,
ComputeType = ComputeType.MEDIUM,

// Specify true to get a privileged container inside the build environment image
Privileged = true
}
})
});
}
}
}

In the preceding code, you use CodeBuildStep instead of ShellStep, since ShellStep doesn’t provide a property to specify BuildEnvironment. We need to specify the build environment in order to set privileged mode, which allows access to the Docker daemon in order to build container images in the build environment. This is necessary to use the CDK’s bundling feature, which is explained in later in this blog post.

Open the file src/DotnetLambdaCdkPipeline/Program.cs, and edit its contents to reflect the below. Be sure to replace the placeholders with your AWS account ID and region for your dev environment.

using Amazon.CDK;

namespace DotnetLambdaCdkPipeline
{
sealed class Program
{
public static void Main(string[] args)
{
var app = new App();
new DotnetLambdaCdkPipelineStack(app, “DotnetLambdaCdkPipelineStack”, new StackProps
{
Env = new Amazon.CDK.Environment
{
Account = “<DEV-ACCOUNT-ID>”,
Region = “<DEV-REGION>”
}
});
app.Synth();
}
}
}

Note: Instead of committing the account ID and region to source control, you can set environment variables on the CodeBuild agent and use them; see Environments in the AWS CDK documentation for more information. Because the CodeBuild agent is also configured in your CDK code, you can use the BuildEnvironmentVariableType property to store environment variables in AWS Systems Manager Parameter Store or AWS Secrets Manager.

After you make the code changes, build the solution to ensure there are no build issues. Next, commit and push all the changes you just made. Run the following commands (or alternatively use Visual Studio’s built-in Git functionality to commit and push your changes):

git add –all .
git commit -m ‘Initial commit’
git push

Then navigate to the root directory of repository where your cdk.json file is present, and run the cdk deploy command to deploy the initial version of CodePipeline. Note that the deployment can take several minutes.

The pipeline created by CDK Pipelines is self-mutating. This means you only need to run cdk deploy one time to get the pipeline started. After that, the pipeline automatically updates itself if you add new CDK applications or stages in the source code.

After the deployment has finished, a CodePipeline is created and automatically runs. The pipeline includes three stages as shown below.

Source – It fetches the source of your AWS CDK app from your CodeCommit repository and triggers the pipeline every time you push new commits to it.

Build – This stage compiles your code (if necessary) and performs a cdk synth. The output of that step is a cloud assembly.

UpdatePipeline – This stage runs cdk deploy command on the cloud assembly generated in previous stage. It modifies the pipeline if necessary. For example, if you update your code to add a new deployment stage to the pipeline to your application, the pipeline is automatically updated to reflect the changes you made.

Figure 2: Initial CDK pipeline stages

Define a CodePipeline stage to deploy .NET Lambda function

In this step, you create a stack containing a simple Lambda function and place that stack in a stage. Then you add the stage to the pipeline so it can be deployed.

To create a Lambda project, do the following:

In Visual Studio, right-click on the solution, choose Add, then choose New Project.
In the New Project dialog box, choose the AWS Lambda Project (.NET Core – C#) template, and then choose OK or Next.
For Project Name, enter SampleLambda, and then choose Create.
From the Select Blueprint dialog, choose Empty Function, then choose Finish.

Next, create a new file in the CDK project at src/DotnetLambdaCdkPipeline/SampleLambdaStack.cs to define your application stack containing a Lambda function. Update the file with the following contents (adjust the namespace as necessary):

using Amazon.CDK;
using Amazon.CDK.AWS.Lambda;
using Constructs;
using AssetOptions = Amazon.CDK.AWS.S3.Assets.AssetOptions;

namespace DotnetLambdaCdkPipeline
{
class SampleLambdaStack: Stack
{
public SampleLambdaStack(Construct scope, string id, StackProps props = null) : base(scope, id, props)
{
// Commands executed in a AWS CDK pipeline to build, package, and extract a .NET function.
var buildCommands = new[]
{
“cd /asset-input”,
“export DOTNET_CLI_HOME=”/tmp/DOTNET_CLI_HOME””,
“export PATH=”$PATH:/tmp/DOTNET_CLI_HOME/.dotnet/tools””,
“dotnet build”,
“dotnet tool install -g Amazon.Lambda.Tools”,
“dotnet lambda package -o output.zip”,
“unzip -o -d /asset-output output.zip”
};

new Function(this, “LambdaFunction”, new FunctionProps
{
Runtime = Runtime.DOTNET_6,
Handler = “SampleLambda::SampleLambda.Function::FunctionHandler”,

// Asset path should point to the folder where .csproj file is present.
// Also, this path should be relative to cdk.json file.
Code = Code.FromAsset(“./src/SampleLambda”, new AssetOptions
{
Bundling = new BundlingOptions
{
Image = Runtime.DOTNET_6.BundlingImage,
Command = new[]
{
“bash”, “-c”, string.Join(” && “, buildCommands)
}
}
})
});
}
}
}

Building inside a Docker container

The preceding code uses bundling feature to build the Lambda function inside a docker container. Bundling starts a new docker container, copies the Lambda source code inside /asset-input directory of the container, runs the specified commands that write the package files under /asset-output directory. The files in /asset-output are copied as assets to the stack’s cloud assembly directory. In a later stage, these files are zipped and uploaded to S3 as the CDK asset.

Building Lambda functions inside Docker containers is preferable than building them locally because it reduces the host machine’s dependencies, resulting in greater consistency and reliability in your build process.

Bundling requires the creation of a docker container on your build machine. For this purpose, the privileged: true setting on the build machine has already been configured.

Adding development stage

Create a new file in the CDK project at src/DotnetLambdaCdkPipeline/DotnetLambdaCdkPipelineStage.cs to hold your stage. This class will create the development stage for your pipeline.

using Amazon.CDK;
using Constructs;

namespace DotnetLambdaCdkPipeline
{
public class DotnetLambdaCdkPipelineStage : Stage
{
internal DotnetLambdaCdkPipelineStage(Construct scope, string id, IStageProps props = null) : base(scope, id, props)
{
Stack lambdaStack = new SampleLambdaStack(this, “LambdaStack”);
}
}
}

Edit src/DotnetLambdaCdkPipeline/DotnetLambdaCdkPipelineStack.cs to add the stage to your pipeline. Add the bolded line from the code below to your file.

using Amazon.CDK;
using Amazon.CDK.Pipelines;

namespace DotnetLambdaCdkPipeline
{
public class DotnetLambdaCdkPipelineStack : Stack
{
internal DotnetLambdaCdkPipelineStack(Construct scope, string id, IStackProps props = null) : base(scope, id, props)
{

var repository = Repository.FromRepositoryName(this, “repository”, “dotnet-lambda-cdk-application”);

// This construct creates a pipeline with 3 stages: Source, Build, and UpdatePipeline
var pipeline = new CodePipeline(this, “pipeline”, new CodePipelineProps
{
PipelineName = “LambdaPipeline”,
.
.
.
});

var devStage = pipeline.AddStage(new DotnetLambdaCdkPipelineStage(this, “Development”));
}
}
}

Next, build the solution, then commit and push the changes to the CodeCommit repo. This will trigger the CodePipeline to start.

When the pipeline runs, UpdatePipeline stage detects the changes and updates the pipeline based on the code it finds there. After the UpdatePipeline stage completes, pipeline is updated with additional stages.

Let’s observe the changes:

An Assets stage has been added. This stage uploads all the assets you are using in your app to Amazon S3 (the S3 bucket created during bootstrapping) so that they could be used by other deployment stages later in the pipeline. For example, the CloudFormation template used by the development stage, includes reference to these assets, which is why assets are first moved to S3 and then referenced in later stages.

A Development stage with two actions has been added. The first action is to create the change set, and the second is to execute it.

Figure 3: CDK pipeline with development stage to deploy .NET Lambda function

After the Deploy stage has completed, you can find the newly-deployed Lambda function by visiting the Lambda console, selecting “Functions” from the left menu, and filtering the functions list with “LambdaStack”. Note the runtime is .NET.

Running Unit Test cases in the CodePipeline

Next, you will add unit test cases to your Lambda function, and run them through the pipeline to generate a test report in CodeBuild.

To create a Unit Test project, do the following:

Right click on the solution, choose Add, then choose New Project.
In the New Project dialog box, choose the xUnit Test Project template, and then choose OK or Next.
For Project Name, enter SampleLambda.Tests, and then choose Create or Next.
Depending on your version of Visual Studio, you may be prompted to select the version of .NET to use. Choose .NET 6.0 (Long Term Support), then choose Create.
Right click on SampleLambda.Tests project, choose Add, then choose Project Reference. Select SampleLambda project, and then choose OK.

Next, edit the src/SampleLambda.Tests/UnitTest1.cs file to add a unit test. You can use the code below, which verifies that the Lambda function returns the input string as upper case.

using Xunit;

namespace SampleLambda.Tests
{
public class UnitTest1
{
[Fact]
public void TestSuccess()
{
var lambda = new SampleLambda.Function();

var result = lambda.FunctionHandler(“test string”, context: null);

Assert.Equal(“TEST STRING”, result);
}
}
}

You can add pre-deployment or post-deployment actions to the stage by calling its AddPre() or AddPost() method. To execute above test cases, we will use a pre-deployment action.

To add a pre-deployment action, we will edit the src/DotnetLambdaCdkPipeline/DotnetLambdaCdkPipelineStack.cs file in the CDK project, after we add code to generate test reports.

To run the unit test(s) and publish the test report in CodeBuild, we will construct a BuildSpec for our CodeBuild project. We also provide IAM policy statements to be attached to the CodeBuild service role granting it permissions to run the tests and create reports. Update the file by adding the new code (starting with “// Add this code for test reports”) below the devStage declaration you added earlier:

using Amazon.CDK;
using Amazon.CDK.Pipelines;

namespace DotnetLambdaCdkPipeline
{
public class DotnetLambdaCdkPipelineStack : Stack
{
internal DotnetLambdaCdkPipelineStack(Construct scope, string id, IStackProps props = null) : base(scope, id, props)
{
// …
// …
// …
var devStage = pipeline.AddStage(new DotnetLambdaCdkPipelineStage(this, “Development”));

// Add this code for test reports
var reportGroup = new ReportGroup(this, “TestReports”, new ReportGroupProps
{
ReportGroupName = “TestReports”
});

// Policy statements for CodeBuild Project Role
var policyProps = new PolicyStatementProps()
{
Actions = new string[] {
“codebuild:CreateReportGroup”,
“codebuild:CreateReport”,
“codebuild:UpdateReport”,
“codebuild:BatchPutTestCases”
},
Effect = Effect.ALLOW,
Resources = new string[] { reportGroup.ReportGroupArn }
};

// PartialBuildSpec in AWS CDK for C# can be created using Dictionary
var reports = new Dictionary<string, object>()
{
{
“reports”, new Dictionary<string, object>()
{
{
reportGroup.ReportGroupArn, new Dictionary<string,object>()
{
{ “file-format”, “VisualStudioTrx” },
{ “files”, “**/*” },
{ “base-directory”, “./testresults” }
}
}
}
}
};
// End of new code block
}
}
}

Finally, add the CodeBuildStep as a pre-deployment action to the development stage with necessary CodeBuildStepProps to set up reports. Add this after the new code you added above.

devStage.AddPre(new Step[]
{
new CodeBuildStep(“Unit Test”, new CodeBuildStepProps
{
Commands= new string[]
{
“dotnet test -c Release ./src/SampleLambda.Tests/SampleLambda.Tests.csproj –logger trx –results-directory ./testresults”,
},
PrimaryOutputDirectory = “./testresults”,
PartialBuildSpec= BuildSpec.FromObject(reports),
RolePolicyStatements = new PolicyStatement[] { new PolicyStatement(policyProps) },
BuildEnvironment = new BuildEnvironment
{
BuildImage = LinuxBuildImage.AMAZON_LINUX_2_4,
ComputeType = ComputeType.MEDIUM
}
})
});

Build the solution, then commit and push the changes to the repository. Pushing the changes triggers the pipeline, runs the test cases, and publishes the report to the CodeBuild console. To view the report, after the pipeline has completed, navigate to TestReports in CodeBuild’s Report Groups as shown below.

Figure 4: Test report in CodeBuild report group

Deploying to production environment with manual approval

CDK Pipelines makes it very easy to deploy additional stages with different accounts. You have to bootstrap the accounts and Regions you want to deploy to, and they must have a trust relationship added to the pipeline account.

To bootstrap an additional production environment into which AWS CDK applications will be deployed by the pipeline, run the below command, substituting in the AWS account ID for your production account, the region you will use for your production environment, the AWS CLI profile to use with the prod account, and the AWS account ID where the pipeline is already deployed (the account you bootstrapped at the start of this blog).

cdk bootstrap aws://<PROD-ACCOUNT-ID>/<PROD-REGION>
–profile <PROD-PROFILE>
–cloudformation-execution-policies arn:aws:iam::aws:policy/AdministratorAccess
–trust <PIPELINE-ACCOUNT-ID>

The –trust option indicates which other account should have permissions to deploy AWS CDK applications into this environment. For this option, specify the pipeline’s AWS account ID.

Use below code to add a new stage for production deployment with manual approval. Add this code below the “devStage.AddPre(…)” code block you added in the previous section, and remember to replace the placeholders with your AWS account ID and region for your prod environment.

var prodStage = pipeline.AddStage(new DotnetLambdaCdkPipelineStage(this, “Production”, new StageProps
{
Env = new Environment
{
Account = “<PROD-ACCOUNT-ID>”,
Region = “<PROD-REGION>”
}
}), new AddStageOpts
{
Pre = new[] { new ManualApprovalStep(“PromoteToProd”) }
});

To support deploying CDK applications to another account, the artifact buckets must be encrypted, so add a CrossAccountKeys property to the CodePipeline near the top of the pipeline stack file, and set the value to true (see the line in bold in the code snippet below). This creates a KMS key for the artifact bucket, allowing cross-account deployments.

var pipeline = new CodePipeline(this, “pipeline”, new CodePipelineProps
{
PipelineName = “LambdaPipeline”,
SelfMutation = true,
CrossAccountKeys = true,
EnableKeyRotation = true, //Enable KMS key rotation for the generated KMS keys

// …
}

After you commit and push the changes to the repository, a new manual approval step called PromoteToProd is added to the Production stage of the pipeline. The pipeline pauses at this step and awaits manual approval as shown in the screenshot below.

Figure 5: Pipeline waiting for manual review

When you click the Review button, you are presented with the following dialog. From here, you can choose to approve or reject and add comments if needed.

Figure 6: Manual review approval dialog

Once you approve, the pipeline resumes, executes the remaining steps and completes the deployment to production environment.

Figure 7: Successful deployment to production environment

Clean up

To avoid incurring future charges, log into the AWS console of the different accounts you used, go to the AWS CloudFormation console of the Region(s) where you chose to deploy, select and click Delete on the stacks created for this activity. Alternatively, you can delete the CloudFormation Stack(s) using cdk destroy command. It will not delete the CDKToolkit stack that the bootstrap command created. If you want to delete that as well, you can do it from the AWS Console.

Conclusion

In this post, you learned how to use CDK Pipelines for automating the deployment process of .NET Lambda functions. An intuitive and flexible architecture makes it easy to set up a CI/CD pipeline that covers the entire application lifecycle, from build and test to deployment. With CDK Pipelines, you can streamline your development workflow, reduce errors, and ensure consistent and reliable deployments.
For more information on CDK Pipelines and all the ways it can be used, see the CDK Pipelines reference documentation.

About the authors:

Ankush Jain

Ankush Jain is a Cloud Consultant at AWS Professional Services based out of Pune, India. He currently focuses on helping customers migrate their .NET applications to AWS. He is passionate about cloud, with a keen interest in serverless technologies.

Sanjay Chaudhari

Sanjay Chaudhari is a Cloud Consultant with AWS Professional Services. He works with customers to migrate and modernize their Microsoft workloads to the AWS Cloud.

Extending CloudFormation and CDK with Third-Party Extensions

Did you know you can use CloudFormation to manage third-party resources? The AWS CloudFormation Public Registry provides a searchable collection of CloudFormation extensions and makes it easy to discover and provision them in CloudFormation templates and AWS Cloud Development Kit (CDK) applications. In the past three months, we’ve added a number of new, exciting partners to the Public Registry, including GitLab, Okta, and PagerDuty.

The extensions available on the registry are wide-ranging and include third-party resources from partners such as MongoDB; hooks, which are preventative controls that add safeguards to provisioning; and modules, which are re-usable components that take into account best practices and opinionated definitions of resources. AWS Partner Network (APN), third parties, and the developer community contribute these extensions to the Public Registry. Using extensions, customers no longer need to create and maintain custom provisioning logic for resource types from third-party vendors.

Over last few months, AWS collaborated with partners to develop and publish over 80 new resources across 14 providers to Public Registry for CloudFormation. Below is a summary of the new resource type additions.

Recently Updated Third-Party Providers

Provider
Use case

MongoDB Atlas

Manage components in MongoDB Atlas. Add, edit, or delete administrative objects within Atlas, including projects, users, and database deployments

Note: You cannot read or write data to Atlas Clusters with Atlas Admin APIs and AWS CloudFormation resources. To read and write data in Atlas, you must use the Atlas Data API

GitLab
Manage the users and groups in an organization, set up a new project with the right users, groups, and access token, tag a project automatically for every active CI/CD deployment

New Relic
Create a new Dashboard with custom Pages, Widgets and Layout, add tags to your data to help improve data organization and findability, workloads-related tasks

GitHub
Manage the users and groups in an organization, set up a new project with the right users, groups, and access token, Add a webhook to a repo

Dynatrace
Set up a new project with service level objective, locations, monitors and metrics

Okta
Onboard a new application into Okta with the right users and groups

PagerDuty
Set up monitoring of a new or existing application

Databricks
Set up a Databricks cluster and jobs

Fastly
Configure Fastly as a CDN for your web app

BigID
Connect S3 and DynamoDB data sources into your BigID application

Rollbar
Set up a new Rollbar project and manage rules, teams, and users

Cloudflare
Configure a DNS record and load-balancing using Cloudflare

Lacework
Configure Lacework alert profiles, rules, channels and manage queries

Snowflake
Create databases, users, and manage privileges

Key Benefits

Here are some of the benefits for extension builders and consumers when publishing extensions to the public registry:

Discoverability – Publishing your extensions in the public registry will make them discoverable by 1M+ active CloudFormation and CDK customers.

CDK Support – We’re seeing rapid growth in the adoption of the CDK amongst the developer population. Upon publishing to the registry, L1 CDK Constructs will automatically be created for your third party resources making them compatible with the CDK with no added work required. These constructs will also be listed on Construct Hub and aids discoverability discoverable by customers. Note: Automated L1 CDK construct generation is currently an experimental feature.

Drift detection – Third-party resource types in the public registry also integrate with drift detection. After creating a resource from a third-party resource type, CloudFormation will detect changes to the third-party resource from its template configuration, known as configuration drift, just as it would with AWS resources.

AWS Config – You can also use AWS Config to manage compliance for third-party resources consumed from the registry. The resource types are automatically tracked as Configuration Items when you have configured AWS Config to record them, and used CloudFormation to create, update, and delete them. Whether the resource types you use are third-party or AWS resources, you can view configuration history for them, in addition to being able to write AWS Config rules to verify configuration best practices.

Abstraction of Best Practices with Modules – Browse and use modules from the registry when creating your CloudFormation templates to ensure you’re provisioning resources while adhering to best practices.

AWS Cloud Control API – The AWS Cloud Control API allows AWS partners and customers to interface with your resource type through API calls using Create, Read, Update, Delete, and List (CRUD-L) operations. Resources in the registry will be automatically integrated with our AWS Cloud Control API and expands your third party resource compatibility to even more AWS services and IaC tools.

We’ve seen great momentum from our partners and developer community over the past year. We are looking forward to continued investment and innovation in the Public Registry.

How to Get Started

For Resource Type Users: Explore and Activate Third Party Resource Types

Third party resource types must first be activated before they can be used. You do this by logging into your AWS Console > Navigate to CloudFormation > Registry > Public extensions > Set the Publisher to Third Party. This will show you a list of available third-party resources in your region (note that different regions may have a different set of third-party resource types). Select the radio box next to the resource types you want to activate and click the activate button at the top of the list.

Figure 1:

Don’t see the extension you need in the registry?

You can submit requests for new third-party extensions through our Community Registry Extensions Github repo issue tracker! Click the New Issue button and describe the third-party extension along with information about your use case.

For Developers and Publishers: Join the CloudFormation Developer Community and Start Building

You can see several of the community-built registry extensions in the AWS CloudFormation Community Registry Extensions repository and even contribute yourself. You can also read about the experiences and lessons learned from publishing to the Registry through this blog written by Cloudsoft.

For developers looking to create new resource types to add to the public Registry, follow this creating resource types walkthrough help you get started. If you need assistance creating, publishing resources, or just want to join the discussion, you can join the conversation today in our CloudFormation Discord Channel. We’d love to hear about your experiences and use cases in developing innovations with registry extensions.

About the authors:

Anuj Sharma

Anuj Sharma is a Sr Container Partner Solution Architect with Amazon Web Services. He works with ISV partners and drives Partner-AWS product development and integrations.

Lucas Chen

Lucas is a Senior Product Manager at Amazon Web Services. He leads the CloudFormation Registry and its integrations with third-party products. Prior to AWS, he spent 9 years at VMware working on its end user computing product, Workspace ONE.

Rahul Sharma

Rahul is a Senior Product Manager-Technical at Amazon Web Services with over two years of product management spanning AWS CloudFormation and AWS Cloud Control API.

Adding CDK Constructs to the AWS Analytics Reference Architecture

In 2021, we released the AWS Analytics Reference Architecture, a new AWS Cloud Development Kit (AWS CDK) application end-to-end example, as open source (docs are CC-BY-SA 4.0 International, sample code is MIT-0). It shows how our customers can use the available AWS products and features to implement well-architected analytics solutions. It also regroups AWS best practices for designing, implementing and operating analytics solutions through different purpose-built patterns. Altogether, the AWS Analytics Reference Architecture answers common requirements and solves customer challenges.

In 2022, we extended the scope of this project with AWS CDK constructs to provide more granular and reusable examples. This project is now composed of:

Reusable core components exposed in an AWS CDK library currently available in Typescript and Python. This library contains the AWS CDK constructs that can be used to quickly provision prepackaged analytics solutions.
Reference architectures consuming the reusable components in AWS CDK applications, and demonstrating end-to-end examples in a business context. Currently, only the AWS native reference architecture is available but others will follow.

In this blog post, we will first show how to consume the core library to quickly provision analytics solutions using CDK Constructs and experiment with AWS analytics products.

Building solutions with the Core Library

To illustrate how to use the core components,  let’s see how we can quickly build a Data Lake, a central piece for most analytics projects. The storage layer is implemented with the DataLakeStorage CDK construct relying on Amazon Simple Storage Service (Amazon S3), a durable, scalable and cost-effective object storage service. The query layer is implemented with the AthenaDemoSetup construct using Amazon Athena, an interactive query service that makes it easy to analyze data in Amazon S3 using standard SQL. With regard to the data catalog, it‘s implemented with the DataLakeCatalog construct using AWS Glue Data Catalog.

Before getting started, please make sure to follow the instructions available here for setting up the prerequisites:

Install the necessary build dependencies
Bootstrap the AWS account
Initialize the CDK application.

This architecture diagram depicts the data lake building blocks we are going to deploy using the AWS Analytics Reference Architecture library. These are higher level constructs (commonly called L3 constructs) as they integrate several AWS services together in patterns.

To assemble these components, you can add this code snippet in your app.py file:

import aws_analytics_reference_architecture as ara

# Create a new DataLakeStorage with Raw, Clean and Transform buckets
storage = ara.DataLakeStorage(scope=self, id=”storage”)

# Create a new DataLakeCatalog with Raw, Clean and Transform databases
catalog = ara.DataLakeCatalog(scope=self, id=”catalog”)

# Configure a new Athena Workgroup
athena_defaults = ara.AthenaDemoSetup(scope=self, id=”demo_setup”)

# Generate data from Customer TPC dataset
data_generator = ara.BatchReplayer(
scope=self,
id=”customer-data”,
dataset=ara.PreparedDataset.RETAIL_1_GB_CUSTOMER,
sink_object_key=”customer”,
sink_bucket=storage.raw_bucket,
)

# Role with default permissions for any Glue service
glue_role = ara.GlueDemoRole.get_or_create(self)

# Crawler to create tables automatically
crawler = glue.CfnCrawler(self, id=’ara-crawler’, name=’ara-crawler’,
role=glue_role.iam_role.role_arn, database_name=’raw’,
targets={‘s3Targets’: [{“path”: f”s3://{storage.raw_bucket.bucket_name}/{data_generator.sink_object_key}/”}],}
)

# Trigger to kick off the crawler
cfn_trigger = glue.CfnTrigger(self, id=”MyCfnTrigger”,
actions=[{‘crawlerName’: crawler.name}],
type=”SCHEDULED”, description=”ara_crawler_trigger”,
name=”min_based_trigger”, schedule=”cron(0/5 * * * ? *)”, start_on_creation=True,
)

In addition to this library construct, the example also includes lower level constructs (commonly called L1 constructs) from the AWS CDK standard library. This shows that you can combine constructs from any CDK library interchangeably.

For use cases where customers have a need to adjust the default configurations in order to align with their organization specific requirements (e.g. data retention rules), the constructs can be changed through the class parameters as shown in this example:

storage = ara.DataLakeStorage(scope=self, id=”storage”, raw_archive_delay=180, clean_archive_delay=1095)

Finally, you can deploy the solution using the AWS CDK CLI from the root of the application with this command: cdk deploy. Once you deploy the solution, AWS CDK provisions the AWS resources included in the Constructs and you can log into your AWS account.

Go to the Athena console and start querying the data. The AthenaDemoSetup provides an Athena workgroup called “demo” that you can select to start querying the BatchReplayer data very quickly. Data is stored in the DataLakeStorage and registered in the DataLakeCatalog. Here is an example of an Athena query accessing the customer data from the BatchReplayer:

Accelerate the implementation

Earlier in the post we pointed out that the library simplifies and accelerates the development process. First, writing Python code is more appealing than writing CloudFormation markup code, either in json or yaml. Second, the CloudFormation template generated by the AWS CDK for the data lake example is 16 times more verbose than Python scripts.

❯ cdk synth | wc -w
2483

❯ wc -w ara_demo/ara_demo_stack.py
154

Demonstrating end-to-end examples with reference architectures

The AWS native reference architecture is the first reference architecture available. It explains the journey of a fake company, MyStore Inc., as it implements its data platform solution with AWS products and services . Deploying the AWS native reference architecture demonstrates a fully working example of a data platform from data ingestion to business analysis. AWS customers can learn from it, see analytics solutions in action, and play with retail dataset and business analysis.

More reference architectures will will be added to this project in Github later.

Business Story

The AWS native reference architecture is faking a retail company called MyStore Inc. that is building a new analytics platform on top of AWS products. This example shows how retail data can be ingested, processed, and analyzed in streaming and batch processes to provide business insights like sales analysis. The platform is built on top of the CDK Constructs from the core library to minimize development effort and inherit from AWS best practices.

Here is the architecture deployed by the AWS native reference architecture:

The platform is implemented in purpose-built modules. They are decoupled and can be independently provisioned but still integrate with each other. The global platformMyStore’s analytics platform has been able to deploy the following modules thanks to:

Data Lake foundations: This mandatory module (based on DataLakeCatalog and DataLakeStorage core constructs) is the core of the analytics platform. It contains the data lake storage and associated metadata for both batch and streaming data. The data lake is organized in multiple Amazon S3 buckets representing different versions of the data. (a) The raw layer contains the data coming from the data sources in the raw format. (b) The cleaned layer contains the raw data that has been cleaned and parsed to a consumable schema. (c) And the curated layer contains refactored data based on business requirements.

Batch analytics: This module is in charge of ingesting and processing data from a Stores channel generated by the legacy systems in batch mode. Data is then exposed to other modules for downstream consumption. The data preparation process leverages various features of AWS Glue, a serverless data integration service that makes it easy to discover, prepare, and combine data for analytics, machine learning, and application development via the Apache Spark framework. The orchestration of the preparation is handled using AWS Glue Workflows that allows managing and monitoring executions of Extract, Transform, and Load (ETL) activities involving multiple crawlers, jobs, and triggers. The metadata management is implemented via AWS Glue Crawlers, a serverless process that crawls data sources and sinks to extract the metadata including schemas, statistics and partitions. It saves them in the AWS Glue Data Catalog.

Streaming analytics: This module is ingesting and processing real time data from the Web channel generated by cloud native systems. The solution minimizes data analysis latency but also to feed the data lake for downstream consumption.

Data Warehouse: This module is ingesting data from the data lake to support reporting, dashboarding and ad hoc querying capabilities. The module is using an Extract, Load, and Transform (ELT) process to transform the data from the Data Lake foundations module. Here are the steps that outline the data pipeline from the data lake into the data warehouse. 1. AWS Glue Workflow reads CSV files from the Raw layer of the data lake and writes them to the Clean layer as Parquet files. 2. Stored procedures in Amazon Redshift’s stg_mystore schema extract data from the Clean layer of the data lake using Amazon Redshift Spectrum. 3. The stored procedures then transform and load the data into a star schema model.

Data Visualization: This module is providing dashboarding capabilities to business users like data analysts on top of the Data Warehouse module, but also provides data exploration on top of the Data Lake module. It is implemented with Amazon Quicksight, a scalable, serverless, embeddable, and machine learning-powered business intelligence tool. Amazon QuickSight is connected to the data lake via Amazon Athena and the data lake via Amazon Redshift using direct query mode, in opposition to the caching mode with SPICE.

Project Materials

The AWS native reference architecture provides both code and documentation about MyStore’s analytics platform:

Documentation is available on GitHub and comes in two different parts:

The high level design describes the overall data platform implemented by MyStore, and the different components involved. This is the recommended entry point to discover the solution.
The analytics solutions provide fine-grained solutions to the challenges MyStore met during the project. These technical patterns can help you choose the right solution for common challenges in analytics.

The code is publicly available here and can be reused as an example for other analytics platform implementations. The code can be deployed in an AWS account by following the getting started guide.

Conclusion

In this blog post, we introduced new AWS CDK content available for customers and partners to easily implement AWS analytics solutions with the AWS Analytics Reference Architecture. The core library provides reusable building blocks with best practices to accelerate the development life cycle on AWS and the reference architecture demonstrates running examples with end-to-end integration in a business context.

Because of its reusable nature, this project will be the foundation for lots of additional content. We plan to extend the technical scope of it with Constructs and reference architectures for a data mesh. We’ll also expand the business scope with industry focused examples. In a future blog post, we will go deeper into the constructs related to Amazon EMR Studio and Amazon EMR on EKS to demonstrate how customers can easily bootstrap an efficient data platform based on Amazon EMR Spark and notebooks.

Flatlogic Admin Templates banner